Skip to main content

An alternative approach to structuring your tests in XUnit

I typically write my unit tests using the AAA(Arrange-Act-Assert) pattern. This pattern splits a test in 3 sections:

  • The Arrange section of a unit test method initializes objects and sets the value of the data that is passed to the method under test.
  • The Act section invokes the method under test with the arranged parameters.
  • The Assert section verifies that the action of the method under test behaves as expected.

Here is an example from one of my projects using XUnit:

In the example above you can see that I include the 3 sections of the AAA pattern inside the test method itself.

Recently I was reading a blog post by Jeremy Miller where I noticed he was using a different approach to separate the 3 sections:

In the example above, Jeremy is using the IAsyncLifetime feature of XUnit to split the 3 sections:

This also works when you don't need async logic by using the constructor and the regular IDisposable interface:

What I like about this approach is that you have less repetitive code as the same arrange and act code can be used for multiple asserts. It allows you to easily group your test by test scenario and bring them logically together in one test class.

And as a nice bonus, it also solves the problem of finding good names for your test classes!

Popular posts from this blog

.NET 8–Keyed/Named Services

A feature that a lot of IoC container libraries support but that was missing in the default DI container provided by Microsoft is the support for Keyed or Named Services. This feature allows you to register the same type multiple times using different names, allowing you to resolve a specific instance based on the circumstances. Although there is some controversy if supporting this feature is a good idea or not, it certainly can be handy. To support this feature a new interface IKeyedServiceProvider got introduced in .NET 8 providing 2 new methods on our ServiceProvider instance: object? GetKeyedService(Type serviceType, object? serviceKey); object GetRequiredKeyedService(Type serviceType, object? serviceKey); To use it, we need to register our service using one of the new extension methods: Resolving the service can be done either through the FromKeyedServices attribute: or by injecting the IKeyedServiceProvider interface and calling the GetRequiredKeyedServic...

Azure DevOps/ GitHub emoji

I’m really bad at remembering emoji’s. So here is cheat sheet with all emoji’s that can be used in tools that support the github emoji markdown markup: All credits go to rcaviers who created this list.

Kubernetes–Limit your environmental impact

Reducing the carbon footprint and CO2 emission of our (cloud) workloads, is a responsibility of all of us. If you are running a Kubernetes cluster, have a look at Kube-Green . kube-green is a simple Kubernetes operator that automatically shuts down (some of) your pods when you don't need them. A single pod produces about 11 Kg CO2eq per year( here the calculation). Reason enough to give it a try! Installing kube-green in your cluster The easiest way to install the operator in your cluster is through kubectl. We first need to install a cert-manager: kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/v1.14.5/cert-manager.yaml Remark: Wait a minute before you continue as it can take some time before the cert-manager is up & running inside your cluster. Now we can install the kube-green operator: kubectl apply -f https://github.com/kube-green/kube-green/releases/latest/download/kube-green.yaml Now in the namespace where we want t...