Skip to main content

RabbitMQ Streams–Reliable Consumers

Last week I introduced RabbitMQ streams and how you could produce and consume streams through the RabbitMQ.Stream.Client in .NET. Yesterday I showed how you can improve and simplify producing messages by using a Reliable Producer. Today I want to introduce its counterpart on the consumer side; the Reliable Consumer.

Introducing Reliable Consumers

Reliable Consumers builts on top of Consumer and adds the following features:

  • Auto-Reconnect in case of disconnection
  • Auto restart consuming from the last offset
  • Handle the metadata Update

Auto-Reconnect

The Reliable Consumer will try to restore the TCP connection when the consumer is disconnected for some reason.

Auto restart consuming from the last offset

The Reliable Consumer will restart consuming from the last offset stored. So you don’t have to store and query the last offset yourself.

Handle the metadata update

If the streams  topology changes (ex:Stream deleted or add/remove follower), the client receives an MetadataUpdate event. The Reliable Consumer detects this event and tries to reconnect the consumer if the stream still exist or closes the consumer when the stream is deleted.

Receiving messages through the Reliable Consumer

Receiving messages through the Reliable Consumer happens in the same way as with the default Consumer.

Popular posts from this blog

.NET 8–Keyed/Named Services

A feature that a lot of IoC container libraries support but that was missing in the default DI container provided by Microsoft is the support for Keyed or Named Services. This feature allows you to register the same type multiple times using different names, allowing you to resolve a specific instance based on the circumstances. Although there is some controversy if supporting this feature is a good idea or not, it certainly can be handy. To support this feature a new interface IKeyedServiceProvider got introduced in .NET 8 providing 2 new methods on our ServiceProvider instance: object? GetKeyedService(Type serviceType, object? serviceKey); object GetRequiredKeyedService(Type serviceType, object? serviceKey); To use it, we need to register our service using one of the new extension methods: Resolving the service can be done either through the FromKeyedServices attribute: or by injecting the IKeyedServiceProvider interface and calling the GetRequiredKeyedServic...

Azure DevOps/ GitHub emoji

I’m really bad at remembering emoji’s. So here is cheat sheet with all emoji’s that can be used in tools that support the github emoji markdown markup: All credits go to rcaviers who created this list.

Kubernetes–Limit your environmental impact

Reducing the carbon footprint and CO2 emission of our (cloud) workloads, is a responsibility of all of us. If you are running a Kubernetes cluster, have a look at Kube-Green . kube-green is a simple Kubernetes operator that automatically shuts down (some of) your pods when you don't need them. A single pod produces about 11 Kg CO2eq per year( here the calculation). Reason enough to give it a try! Installing kube-green in your cluster The easiest way to install the operator in your cluster is through kubectl. We first need to install a cert-manager: kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/v1.14.5/cert-manager.yaml Remark: Wait a minute before you continue as it can take some time before the cert-manager is up & running inside your cluster. Now we can install the kube-green operator: kubectl apply -f https://github.com/kube-green/kube-green/releases/latest/download/kube-green.yaml Now in the namespace where we want t...