Skip to main content

Akka.NET–Distributed Systems made simple

For a customer I’m working on a highly concurrent distributed system. As the requirements evolve, we get more and more an idea about the high level of complexity that is involved in building such a system.

I could switch to a different language like Erlang, that is designed for such a task, but instead I decided to give Akka.NET a try…

image

From the site:

Akka.NET is a toolkit and runtime for building highly concurrent, distributed, and fault tolerant event-driven applications on .NET & Mono.

This community-driven port brings C# & F# developers the capabilities of the original Akka framework in Java/Scala.

Learn about Akka for the JVM here.

Akka  offers a C# implementation of the Actor Model. The Actor Model provides a higher level of abstraction for writing concurrent and distributed systems. It alleviates the developer from having to deal with explicit locking and thread management, making it easier to write correct concurrent and parallel systems. Actors were defined in the 1973 paper by Carl Hewitt but have been popularized by the Erlang language, and used for example at Ericsson with great success to build highly concurrent and reliable telecom systems.

Similar projects exist like Microsoft Project Orleans.

image

To help you get started, the creators of Akka.NET, provided a free(!) bootcamp with 18 lessons. Go check it out at https://petabridge.com/bootcamp/.

Popular posts from this blog

.NET 8–Keyed/Named Services

A feature that a lot of IoC container libraries support but that was missing in the default DI container provided by Microsoft is the support for Keyed or Named Services. This feature allows you to register the same type multiple times using different names, allowing you to resolve a specific instance based on the circumstances. Although there is some controversy if supporting this feature is a good idea or not, it certainly can be handy. To support this feature a new interface IKeyedServiceProvider got introduced in .NET 8 providing 2 new methods on our ServiceProvider instance: object? GetKeyedService(Type serviceType, object? serviceKey); object GetRequiredKeyedService(Type serviceType, object? serviceKey); To use it, we need to register our service using one of the new extension methods: Resolving the service can be done either through the FromKeyedServices attribute: or by injecting the IKeyedServiceProvider interface and calling the GetRequiredKeyedServic...

Azure DevOps/ GitHub emoji

I’m really bad at remembering emoji’s. So here is cheat sheet with all emoji’s that can be used in tools that support the github emoji markdown markup: All credits go to rcaviers who created this list.

Kubernetes–Limit your environmental impact

Reducing the carbon footprint and CO2 emission of our (cloud) workloads, is a responsibility of all of us. If you are running a Kubernetes cluster, have a look at Kube-Green . kube-green is a simple Kubernetes operator that automatically shuts down (some of) your pods when you don't need them. A single pod produces about 11 Kg CO2eq per year( here the calculation). Reason enough to give it a try! Installing kube-green in your cluster The easiest way to install the operator in your cluster is through kubectl. We first need to install a cert-manager: kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/v1.14.5/cert-manager.yaml Remark: Wait a minute before you continue as it can take some time before the cert-manager is up & running inside your cluster. Now we can install the kube-green operator: kubectl apply -f https://github.com/kube-green/kube-green/releases/latest/download/kube-green.yaml Now in the namespace where we want t...