Skip to main content

XUnit Collection fixtures

While reviewing some XUnit unit tests, I noticed the usage of the [Collection] attribute.

I didn’t know the attribute. So I took a look at the XUnit documentation and discovered the existence of Collection fixtures. It allows you to create a single test context and share it among tests in several test classes, and have it cleaned up after all the tests in the test classes have finished.

In the code I was reviewing it was used to spin up a test server and shut it down after all tests has been completed.

I don’t find it very intuitive how it should be used but it is well explained in the documentation. In case you are too lazy to click on the link, here are the steps:

  • Create the fixture class, and put the startup code in the fixture class constructor. If the fixture class needs to perform cleanup, implement IDisposable on the fixture class, and put the cleanup code in the Dispose() method.
  • Create the collection definition class, decorating it with the [CollectionDefinition] attribute, giving it a unique name that will identify the test collection. Add ICollectionFixture<> to the collection definition class.
  • Add the [Collection] attribute to all the test classes that will be part of the collection, using the unique name you provided to the test collection definition class's [CollectionDefinition] attribute. If the test classes need access to the fixture instance, add it as a constructor argument, and it will be provided automatically.

Popular posts from this blog

Azure DevOps/ GitHub emoji

I’m really bad at remembering emoji’s. So here is cheat sheet with all emoji’s that can be used in tools that support the github emoji markdown markup: All credits go to rcaviers who created this list.

Kubernetes–Limit your environmental impact

Reducing the carbon footprint and CO2 emission of our (cloud) workloads, is a responsibility of all of us. If you are running a Kubernetes cluster, have a look at Kube-Green . kube-green is a simple Kubernetes operator that automatically shuts down (some of) your pods when you don't need them. A single pod produces about 11 Kg CO2eq per year( here the calculation). Reason enough to give it a try! Installing kube-green in your cluster The easiest way to install the operator in your cluster is through kubectl. We first need to install a cert-manager: kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/v1.14.5/cert-manager.yaml Remark: Wait a minute before you continue as it can take some time before the cert-manager is up & running inside your cluster. Now we can install the kube-green operator: kubectl apply -f https://github.com/kube-green/kube-green/releases/latest/download/kube-green.yaml Now in the namespace where we want t...

Podman– Command execution failed with exit code 125

After updating WSL on one of the developer machines, Podman failed to work. When we took a look through Podman Desktop, we noticed that Podman had stopped running and returned the following error message: Error: Command execution failed with exit code 125 Here are the steps we tried to fix the issue: We started by running podman info to get some extra details on what could be wrong: >podman info OS: windows/amd64 provider: wsl version: 5.3.1 Cannot connect to Podman. Please verify your connection to the Linux system using `podman system connection list`, or try `podman machine init` and `podman machine start` to manage a new Linux VM Error: unable to connect to Podman socket: failed to connect: dial tcp 127.0.0.1:2655: connectex: No connection could be made because the target machine actively refused it. That makes sense as the podman VM was not running. Let’s check the VM: >podman machine list NAME         ...